|
数据挖掘涉及到公司运营的方方面面,这包括对企业部门经营情况的评估、内部员工的管理、生产流程的监管、产品结构优化与新产品开发、财务成本优化、市场结构的分析和客户关系的管理。其中,关于客户与市场的数据分析是“重头戏”。
数据
1.发掘潜在客户(市场细分):
关于这个主题的分析,更多的是基于地区、性别和年龄段等粗粒度的指标,结合产品设计定位和目标客户群体进行匹配。比如,**母婴产品的潜在客户应该是新建**小区中的住户。这类分析是运用**早的,在广告投放、新店寻址等场景下大量使用。
2.客户获取:
当客户初次了解我们的产品和服务后,有可能会犹豫不决,拖延很久才可能真正成为我们的客户,而大部分客户在这期间会由于兴趣逐渐减退而**终流失。比如,**新客户在填好个人信息,并收到**后却迟迟没有开卡。这时**可以运用数据挖掘技术,对营销人员得到的客户基本信息进行一个初步筛选,找出购买倾向性较高的客户进行深度**营销。
这么做既减少了人工成本,又降低了打扰客户的次数,从而减少了投诉。同时在与潜在客户的交流中,也会为其制定更个性化的产品或服务组合。
3.初始信用评分:
当客户**终购买我们的产品时,在涉及赊销情况的时候,**会用到初始信用评分技术。这是根据客户的性别、年龄以及居住场所等基本信息对客户的信用进行预判。这类情况不只在银行信贷中会遇到,在很多企业中都会遇到。
企业的应收账款**是一种自然的商业信用,建立好**的初始信用评分体系,可以使企业在不增大财务风险的情况下快速开拓市场。比如,IBM全球融资部(IGF)是一个为赊购买入IBM产品的小公司提供金融服务的部门,其在上世纪80年**发的客户信用评分模型对开拓全球市场功不可没。现在这个技术也成为了提高客户满意度的一种方式。比如,中国移动的先付费客户的欠费额度和京东的“打白条”服务。
4.客户价值预测:
为了更好地为客户提供服务的同时增加企业利润,需要根据客户的基本信息进行其价值预测。其中价值既包括以消费水平为代表的直接价值,也包括客户口碑宣传的间接价值。5.客户细分(市场细分):
根据客户的基本信息,从人口学、工业统计信息、社会状态、产品使用行为等方面对客户进行细致的描述。这对分析客户类型结构、修正产品定位、满足细分群体需求开发新产品、提高客户满意度和分析客户需求变化趋势都是有意义的。 |
|